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ABSTRACT  

This paper will discuss techniques for improving campaign planning involving complex systems of systems (SoS) 
to quickly: understand the operational environment; define the problem; visualize the military end-state; and 
intervene with optimal operational approach (ways/means) to achieve military end state.  

This paper will focus on the integration of Modeling-Simulation-Analytics-Looping (MSAL), Big Data Analytics, 
cognitive, and graph computing components into a framework that enables the modeling and simulation (M&S) 
of complex systems of systems (SoS).  The framework applies Big Data technology to collect open source data; 
natural language processing (NLP) to automatically extract entities and relationships; analytics to model values, 
behaviors, patterns of life; and graph computing to graphically depict a Common Operating Picture (COP) that 
represents the real-world (mission environment).  In the Model Analysis Looping (MAL) process, the mission 
environment is translated into static models (mission model) as a set of inter-connected graphical paths, 
capabilities, and behaviors that describe relationships between systems of the mission environment under test. 
Decision-makers define the goals and supporting mission threads (sequence of nodes and events) to achieve the 
goals.  The Simulation-Analysis-Loop (SAL) tests the dynamic behavior of a model along a goal-based, mission 
thread via simulation to quantify both performance, sensitivity, and uncertainty (i.e., the random nature of MSAL 
data will vary as the epistemic framework evolves).  Through SAL, decision-makers can understand the impact of 
local/macro uncertainty and performance – weigh/make trade-offs to derive optimal operational approaches that 
achieve mission goals. 
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1.0 INTRODUCTION 

The world has seen an unprecedented acceleration in population growth, industrialization, urbanization, and 
economic growth along with a large increase in production and consumption.  This has generated competition 
between states, driving up the demand for resources.  The globalization of economic prosperity has been 
distributed unequally leaving 2.8 billion people living below the poverty level, which has intensified tensions 
between the haves and have-nots [1].  The population growth is occurring mostly in developing countries in 
areas such as Africa, the Middle East, and South Asia.  The majority of these people live in high population 
urban areas where local and state governments have failed to provide basic needs (food, water, clothing, and 
shelter) necessary for physical and social well-being. These pressures have led to population dissatisfaction and 
increased opportunities for instability, radicalism, and extremism [1]. 

These drivers of globalization, adversaries’ rapid adaption of innovative technologies; demographic changes 
coupled with increasing urbanization; rising resource demands; climate change and natural disasters diminishing 
available resources; proliferation of weapons of mass destruction; and the consequences of failed or failing 
states have destabilized regional societies and created an era of persistent conflict.  These events have led to an 
increase in political, economic, and ethnic divisions/diffusion of power thus creating a complex hybrid warfare 
environment.  Extremist adversaries will use unconventional, asymmetric, immoral warfare tactics and means 
to achieve their ends [3].  This hybrid warfare environment is creating a complex security environment 
characterized by several persistent trends: the proliferation of weapons of mass destruction, the rise of modern 
competitor states, violent extremism, regional instability, transnational criminal activity, and competition for 
dwindling resources [4]. 

The range of contingencies in today’s hybrid warfare environment requires a wide Range Of Military Operations 
(ROMO) from crisis and disaster recovery to major operations and campaigns.  These military operations 
present challenges for NATO in understanding the composition of the entities, conditions, circumstances and 
influences that makeup the operation environment.  The hybrid warfare environment is becoming more complex 
and more unpredictable due to the multiple factors, feedback loops and inter-correlated effects such as enemy, 
friendly, and neutral entities (systems) across the spectrum of conflict.  They also include an understanding of 
the physical environment, the state of governance, technology, local resources, grievances and the culture of the 
local population across space and time.  NATO commanders will need to develop new model and simulation 
capabilities to better understand today’s complex operating environment (OE).   

The complexity of a hybrid warfare environment can be described by McCabe’s cyclomatic complexity number1 
– where complexity in the real-world environment increases as the number of entities (nodes), connected edges
(relationships and inter-correlated effects) and active paths (feedback loops) increases.  This complexity and 
uncertainty in modeling and simulation (M&S) of hybrid warfare environments and non-traditional security 
threats can produce a wide range of variations in predicted results due to: 1) the lack of data; 2) challenges of 
processing and analyzing Big Data; and 3) challenges in modeling human, cultural and organizational behavior 
that contribute to uncertainty.   

In M&S hybrid warfare environments, the goal is to identify each important source of uncertainty, and then 
quantify its magnitude, risk, and impact in decision making.  Uncertainty Quantification (UQ) involves the 
identification, characterization, propagation, analysis and reduction of all uncertainties in M&S [6].   
Various types of uncertainties need to be considered including: parameter uncertainty, parametric variability, 
structural uncertainty, algorithmic uncertainty, experimental uncertainty, and interpolation uncertainty.  This 

1 Complexity is being defined as a function of the number of entities and entity interaction/relationships in a manner in 
kind with McCabe’s Cyclomatic number (McCabe 1976) used in the software community. 
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paper will present techniques to collect, model, simulate, and analyse data in iterative loops to reduce unknown 
uncertainty in M&S.  The authors will also describe stochastic capabilities that augment commanders’ decision 
making, to help them better understand the current and forecasted problems, risks, impacts, and resource 
dependencies.  The combination of these capabilities with a set of supporting technologies (MSAL, Big Data 
Analytics, cognitive, and graph computing components) integrated into a common framework will enable better 
1) simulations of optimal operation approaches; 2) deployment of resources; and 3) understanding of risks
within an OE to achieve the end state. 

2.0 CHALLENGES OF MODELING AND SIMULATING HYBRID WARFARE 
ENVIRONMENTS 

In Hybrid warfare, insurgents combine traditional, disruptive, catastrophic, and irregular capabilities to then 
create advantageous conditions, quickly changing the nature of the conflict and moving to employ capabilities 
for which the NATO allied forces are least prepared.  In hybrid warfare, the enemy uses small groups to engage 
in complex terrain and urban environments, where they hide and fight among the people to offset allied forces 
[1].  These tactics used by insurgents in hybrid warfare try to exhaust/defeat allied forces by creating grey zones.  
These grey zones create a challenge for allied forces because they have to develop capabilities to understand 
human aspects of the operational environment through these operational environment variables: political, 
military, economic, social, information, infrastructure, physical environment, and time (known as PMESII-PT).  

Applying the PMESII-PT framework to understand human and organizational behaviour is a challenge because 
there is a high degree of uncertainty in the variables discussed above, and risk inherent in understanding how 
humans will behave and react to traditional, disruptive, catastrophic, irregular, climate change, and non-
traditional threats (water, food, and energy insecurities) [1].  In addition, modeling the PMESII-PT operating 
environment variables are a challenge because they introduce complex cultural, demographic, and physical 
environmental factors to the model.  These factors add to the uncertainty and risk in understanding and making 
decisions on how to intervene in an operational environment.  Also, NATO forces are potentially challenged to 
keep pace with the current/future situation and problems in the dynamics, interconnectedness, and extreme 
volatility of a hybrid warfare operating environment.   

Leveraging defense information such as “all source, multi-INT” for PMESII-PT data has its challenges.  
Difficulties in collection, processing, analyzing, and visualizing of the associated Big Data (using traditional 
methods) contribute to the challenges in understanding the PMESII-PT variables.  Traditional M&S 
technologies have challenges in processing the large volumes, variety, veracity and velocity associated with 
multi-INT Big Data, e.g., exploring and discovering the nth interrelationships between indirect variables within 
and across networks needed to model real-world hybrid warfare environments.  These challenges lead to the 
inability to accurately: 1) Model strategy—matching the problem to the real world; 2) Model tactics—designing 
the internal structure of a model; and 3) Model physical phenomena and human behavior —dealing with 
uncertainty and adaptation.   

New Capabilities to Understand Hybrid Warfare Environment This work will apply concepts of system 
dynamics and cybernetics supported by an integrated set of technologies like Big Data (information extraction), 
graph computing, cognitive computing and IoT to help decision makers understand the complexities of the 
entities, drivers, relationships, and feedback loops that exist in the hybrid warfare operating environment.  This 
paper will discuss how the use of cybernetics will better enable the understanding of the PMESII-PT variables 
in an operating environment for planning mission operations.  The concepts and technologies presented in this 
paper will provide decision makers the capabilities to capture factors that are critical in the urban battlespace. 
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Cybernetic capabilities are important for decision makers to understand how human and organizational 
behaviors play across the full spectrum of operations, particularly during urban operations.  As stated by the 
Joint Urban Operations Workshop: “Employ high-resolution modeling, simulations, and other decision support 
tools that incorporate friendly, enemy, and neutral forces, plus the urban population in order to conduct 
rehearsals, assess courses of action, and make better decisions faster than the enemy in an urban operation” 
(Mahoney, 2005).  A platform containing these concepts and technologies will enable decision makers to:  

1) Semi-automate the process of data collection and graphically depicting the entities, relationships, and
feedback loops into an environment model as they exist in the real world; 
2) Understand regional physical and human behaviour problems; perform abductive reasoning; predict future
impacts on regional socio-economic and environment stability; 
3) Predict future possible outcomes of conflicts;
4) Better visualize the end-state;
5) Understand human and organization behaviours – dealing with uncertainty and adaptation;
6) Derive M&S optimal solutions with known probabilities of success, performance, and uncertainty
(aleatoric/epistemic) to achieve mission goals.  
7) Combine components and federating models to span multiple levels of the M&S pyramid of strategy and
tactics by linking and traversing a set of graph models. 

Adopting these platform capabilities would allow NATO to develop the capability to better intervene in hybrid 
warfare to prevent crises, manage conflicts and stabilize post-conflict situation. 

The Battle of Aleppo (2016) is an example of a complex hybrid warfare environment that contain multiple state, 
non-state, and foreign countries that use traditional, catastrophic, disruptive, irregular warfare tactics to impose 
their will on the civilians in supporting or overthrowing the local government.  The military confrontation in 
Aleppo is mostly between the Free Syrian Army, Islamic Front, People's Defense Units and Sunni militants 
against the Syrian government, Hezbollah and Shiite militants.  The ongoing conflict in Syria involves foreign 
countries like U.S., Russia, Iran, and Saudi Arabia participating in a series of overlapping proxy wars between 
the regional and world powers [14].  The city of Aleppo used to be Syria’s commercial capital – still mixed with 
multicultural groups (Kurds, Iranians, Turkmen, Armenians and Circassians) and multi-denominational 
churches and mosques that still share the space.  Nationwide protests against the government of President Bashar 
al-Assad started in March 2011, as part of the “Arab Spring” movement. These protests were led by disgruntled 
countrymen who were forced to leave their farms and villages in Al-Bab, Marea, Azaz, Tel Rifaat and Manbi 
due to droughts, lack of water or food.  When these people arrived in Aleppo, the Syrian government failed to 
provide their basic needs.  Tensions between the rich and poor, different cultures, and ethnic groups broke into 
protests and conflicts. The Free Syrian Army, largely composed of army defectors, were able to provide Aleppo 
countryside men with their basic needs.  In turn the Free Syrian Army won their loyalty and were able to recruit 
many to join their army, support their ideology, and attempt to overthrow the Syrian government [8]. 

The war in Aleppo is composed of complex and uncertain interconnected parts and behaviors.  This work will 
discuss how system dynamics and cybernetic concepts supported by MSAL, Big Data, IoT, Cloud, and cognitive 
computing enables decision makers to model and simulate complex and unpredictable systems-- combining 
components and federating models from the conceptual (strategic) to the tactical model in the M&S pyramid. 
The cybernetics cognitive and social systems technologies will be applied to help decision makers understand 
“circular causal” relationships and interplays of the PMESII-PT variables influencing and triggering change in 
Aleppo’s OE.  These capabilities will help decision makers understand the current and predicted situational 
awareness, visualize the end state and goals, and derive optimal alternative mission approaches through iterative 
MSALs to answer these questions: 
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1. What groups make up the rebel forces?  What are their Ends, Ways, and Means?

2. What groups make up the established government/ military forces?

3. Who are the most influential people/organizations/outlets?

4. What are the social culture impacts caused by the conflict?  What’s the current refugee situation?

5. How does water/farming play a vital role in Aleppo’s sustainable development that include human health,
food and energy security, urbanization, and industrial growth?

6. How does economics play into the conflict?  What’s the impact to cost of living?  What business benefit,
what businesses are destroyed by the conflict?

3.0 SYSTEM DYNAMICS ENABLING THE M&S OF COMPLEX ENVIRONMENTS 

System dynamics modeling is a method of modeling the dynamic behavior of complex systems by breaking 
down these systems into simpler interconnected components (“blocks”) which are connected together via links 
that as a whole exhibit one or more properties (i.e. behaviors) not obvious from the properties of the individual 
parts.  This method can allow decision makers to model and simulate hybrid warfare Operational Environments 
(OEs) like Aleppo’s complex social, warfighting, economic, political, and ecological systems.  Applying system 
dynamics enables M&S of complex interdependencies in the Aleppo operating environment. 

The Aleppo entities representing disorganized complexity are treated using probability theory and statistical 
mechanics.  System dynamics enable the M&S of the many complex systems represented in Aleppo’s operating 
environment and capture 1) the large number of entities, with 2) non-trivial interaction networks, whose 3) 
impacts on one another are non-linear, and whose overall behaviour tends to display emergent characteristics. 

3.1 Modeling and Simulation of Complex Environments
The Observe-Orient-Decide-Act (OODA) loop is a good way to represent the decision-making behavior in a 
SoS simulation as shown in Figure 1.  The idea behind OODA is that decision-making occurs in quick recurring 
cycles while observing and reacting to unfolding events rapidly [7].   The four interrelated and overlapping 
OODA processes are listed below.  

 Observe: the collection of data by means of sensing.  Enhance understanding of operating environment
PMESII-PT variables.  Big Data, IoT, NLP, and advanced analytics enable the collection, fusion, and
analysis of multi-INT data.  The NLP and information extraction enables automated extraction of entities,
relations, and co-references between entities into structured databases like SOLR.  Applying graph
computing enables an automated graphical depiction of a Common Operating Picture (COP) in the form
of a Knowledge Graph representing the real-world (SoS).  This will enhance current understanding of
the forces driving regional violence and instability.  This will improve the decision maker’s abilities to
identify non-obvious relationships that may be causing problems in the region.  Graph computing
algorithms like graph database, network topological, graph matching and search, and probabilistic
graphical model will enable defining the mission model under test and possible mission threads to achieve
the mission goals.
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MSAL is a set of three nested loops about a common Mission Model. The Uber Loop is the intersection of the 
real or tactical world with the virtual run-time environment. The Uber Loop is a process where modelers use a 
construct called the mission environment to create a real-world system thinking model of the OE.  The mission 
environment model allows decision-makers to visualize the real-world environments (entities, behaviors and 
interconnections) as a set of nodes, edges and paths/walks in the graph. The Model-Analysis-Loop (MAL) 
creates the static models (mission model) that are abstractions of the real world mission environment model 
that is under test.  In the MAL process, decision-makers define the goals and supporting mission threads 
(sequence of nodes and events/stimulus) to achieve the goals.  The Simulation-Analysis-Loop (SAL) tests the 
dynamic behavior of a model along a goal-based, mission thread via simulation to quantify both performance 
and uncertainty.  The MSAL determines optimal alternative approaches using quantitative risk models that 
calculate the impact of the uncertain parameters and decisions through continuous MSAL processing of past 
and current data.   [9]. 

Figure 2 – Model-Simulation-Analysis-Looping Architecture 

3.3 Modeling the Real-World Environment 
The MSAL architecture provides graph analytics to create an abstract model that represents the complexities 
and uncertainties of the real-world situation(s).  The mission environment is a SoS representing the entities, 
structures, and interconnections.  The mission environment models are represented as graphs, enabling the 
ability to capture and represent complex relationships in systems.  In a hybrid warfare environment – the mission 
environment represents the PMESII-PT OE variables, relations, and feedback loops as they exist in the real-
world.  Big Data technologies, Natural Language Processing (NLP), contextual analytics, and graph computing 
enables the collection of structured/unstructured data. A Common Operating Picture (COP) can be constructed 
that represents the complexities and uncertainties of the population, human and organizational behaviours, and 
their inner connections to real-world situations. 

IoT (Internet of Things) is a key technology to collect environment data from the entities/systems represented 
in your mission environment (real-world), as illustrated in figure 3.  For example, in the Aleppo OE battlefield 
– IoT enables things to be instrumented, interconnected, and intelligent.  These capabilities plus Big Data
technologies (Streams, Cloudant DB, Apache Spark) enables the capture of data sources in real-time.  
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Figure 3 – Capturing Battlefield Environment Structured Data 

3.4 Modeling an Environment’s Human, Organizational, and Societal Behaviours 
When extreme weather events hit a region or basic needs for citizens are not met, like in Aleppo – extremists 
seize opportunities to use unconventional, irregular, and criminal tactics to create conditions of instability in 
regions.  The threat actors in Aleppo use irregular warfare tactics like blending with civilians to protect 
themselves against allied strikes.  NATO can improve their situational understanding of who are these Syrian 
government’s opposition like Syrian National Coalition; and what foreign involvement are they receiving 
(military, financial, logistical, and political); and how do their actions favor/conflict with NATO’s overall 
strategy.  Also, understand who are the Syrian government’s opposition forces (Islamic State (ISIL)) opposing 
NATO’s strategic mission goals and who (U.S., Russia, and France) are participating in direct military action 
against ISIL in the territory of Syria.  In order to better understand the current PMESII-PT variables, 
relationships, and feedback loops in the Aleppo OE – NATO could adopt techniques such as web crawlers, 
NLP, information extraction, contextual analytics, and graph computing to automate the collection of 
unstructured data (text, voice, and video) and extraction of an ontology’s entity types (people, places, resources, 
organizations, etc.) and their relations and co-references; store the data in a structured format (SOLR/Cloudant 
DB); and dynamically create a COP of the real-world.  These capabilities will enable continuous collection of 
unstructured data and extraction of tacit knowledge from the unstructured data into implicit knowledge for 
intelligence analysis. 

A widely used classification framework for mention detection is the Maximum Entropy classifier, which 
integrates arbitrary types of information and makes a classification decision by aggregating all information 
available for a given classification [9].  Figure 4 illustrates how the Maximum Entropy classifier (statistic 
machine translation) enables computers to extract and understand important entities mentioned in textual data 
and relationships between them (like terrorist and insurgent networks and organizational structures and events) 
where modelers can ingest the unstructured data into their mission environment models and apply graph 
computing techniques (relation graphs, multivariate graphs, etc.) that can be used to dynamically depict COP 

Improving Decision Making by Reducing 
Uncertainty in Complex Systems of Systems 

15 - 8 STO-MP-MSG-143 



of the OE. 

Figure 4 – Information Extraction 

Figure 5 – Real-time COP of an OE’s Entities and Relations and Sentiment 

The mission environment provides decision makers a current understanding the entities, relationships, and 
feedback loops within the OE.  For example in the Aleppo, Syrian conflict – decision makers will have an 
understanding of the insurgents, counter-insurgents, and terrorist groups; lethal events of asymmetric 
unconventional warfare tactics; social networks and influencers; who’s receiving support from foreign 
nations/criminal organizations; what support is being provided (financial, military, logistical, etc.,); and events of 
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civil war, state-on-state, insurgency, mass migration, competition for resources occurring in the OE, as illustrated 
in figure 5. 

3.5 Abstracting the Real World - Understanding, Projecting, and Forming Societal Behavior 
As stated above, hybrid threats will require NATO to support a wide ROMO from peace keeping, crisis 
management, and military operations.  The military leaders know these future engagements will be mostly 
influenced by society: political and military organizations, ethnic groups, national cultures, and transnational 
religious organizations [15].  It will be important for decision makers to model the individual, organization 
behaviors of the PMESII-PT OE variables.  The mission environment provides decision makers a common 
visualization and assessment of the real-world OE.  The MAL framework provides the capabilities to leverage 
models to developed tactical, operational, and strategic missions.   

MAL enables leaders to create the static models (mission model) that are abstractions of the real world (mission 
environment model) that is under test.  MAL provides an operational design approach to help decision makers 
link ends, ways, and means to achieve the desired end state (see figure 6).  The mission model is a set of a 
scenarios that identify the major systems/actors that must be represented by the simulation, a conceptual 
description of the capabilities, behaviors, and relationships (interactions) between these major systems/actors 
over time.  The decision makers will use the MAL framework to: 

1. Understand the Problem – using human, organizational, and societal behavioral models, leaders are able
to identify the current and predicted set of obstacles the commander needs to overcome to achieve the
end-state.

2. Visualize the End-State – decision makers define the military end state that must be achieved, how is it
related to the strategic end state, and what objectives must be achieved to enable that end state.  This step 
defines the model under test.

3. Design the Operational Approach – in this step, decision makers define sequence of actions and critical
capabilities (mission threads) which are most likely to achieve those objectives and the end state (Ways).
They need to determine the required resources to accomplish that sequence of actions within given or
requested resources (Means).  In the MAL, the mission threads (plausible outcomes) are based on the
underlying combinatorics of everything in the mission environment model (real-world).  The Simulation
Analytics Looping (SAL) will simulate the performance, probability of success, unacceptable
consequences, and uncertainty in performing that sequence of actions (Risk).  Dynamically simulating the
mission threads will determine optimal alternative approaches that are the most probable and provide
insight into the general order of actions.  See section 3.9 on “Simulating the Optimal Goal-Based Mission
Threads” for an explanation of the SAL process.

During the MAL process, modelers can use graph computing, Social Network Analysis (SNA), link
analysis, and agent based models (ABMs) to understand, project, form, and intervene in urban situations.
These models and technologies will help modelers understand and project: 1) overlapping society networks;
2) local cultures and ethnic groups; 3) local economies; 4) adversaries’ actions, and individual and collective
behaviors.  These models combine elements of voting, game theory, preference, complex systems, 
emergence, computational sociology, multi-agent systems, operational/managerial independence, 
evolutionary programming [10].   Applying these models on the unstructured data will enable decision 
makers to 1) plan and measure the effectiveness of PSYOPS campaigns; 2) monitor and predict regional 
socio-economic stability; and 3) identify who is or likely to harbor or become a terrorist. 
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The goal of the MAL process is to reduce the number of mission models to the ones with the most impact on 
the model under test to perform in the SAL.  This is done by performing iterations on the mission threads in 
the model under test using network topological analysis to look for characteristics such as complexity, 
centrality, density, etc. 

Figure 6 – MAL - Mission Goals, Mission Model, and Mission Threads 

3.6 M&S Graphs and Graph Analytics 
This section will explain how graph computing (database, analytics, and models) applies to M&S. Graph 
computing provides the definition of the execution of events to be used in a simulation (an event string is a 
graph path). Two fundamental components of a simulation model are a set of state variables and a set of events. 
The model emulates the system being studied by producing state trajectories/paths; that is, time plots of the 
values of the system's state variables.  Measures of performance are determined as statistics of these state 
trajectories.  In addition to graphs defining the order in which events are processed in a simulation, graphs can 
also be the basis for stochastic simulation, e.g., Marchov chains, Bayes nets, and creedal nets. For example, a 
Bayesian network (Bayes network or belief network) is a probabilistic graphical model that represents a set of 
random variables and their conditional dependencies via a directed acyclic graph (DAG).  A Bayesian network 
could be used to represent the probabilistic relationships between prolong food shortages and famine.  Given 
food shortages, the network can be used to compute the probabilities of the presence of various famine [7]. 

The second way in which graphs apply to simulation is in the definition of scenarios.  A scenario (or mission) 
is an identification of the major systems/players that must be represented by the simulation, a conceptual 
description of the capabilities, behavior, and relationships (interactions) between these major system/players 
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over time, and a specification of relevant environmental conditions (e.g., terrain, atmospherics) [16]. It is 
common to think of scenarios as event based and cast as a directed acyclic graph (DAG) with branches at 
decision points. Unlike a fault tree, scenarios are described as a success tree [7].  The data associated with the 
scenario is commonly captured in an ontology. Ontology is a model of the entity types, attributes, and 
relationships of the entity types that exist for a specific real-world domain. Ontology compartmentalizes the 
variables needed for some set of computations and establishes the relationships between them. 

3.7 Understanding PMES Variables (Individual and Organizations Behaviors) 
Modelers can use micro (individual), macro (organizational), and meso-level (between the micro/macro levels) 
models to understand individual and group interactions.  These models include several social decision models, 
social network models, link analysis, and agent-based modeling (ABM).  These models can be used to model 
individuals and groups’ political, social psychology, sociology, and economics behavior within an urban OE 
[10].  Applying these types of models on the information extracted from unstructured data, analyzed using 
contextual (relation graph) and cognitive analytics (Deep Learning and Emotion Analysis) and then representing 
the data in a graph database and spatiotemporal analytics (space/time) will enable better mapping and prediction 
of individuals and organizations behavior, anomalies in pattern of life, and cross person and group analysis.  
Applying these technologies and models will enable decision makers to understand and better predict how 
individuals and their group interactions will react to events in a hybrid warfare OE such as terrorism, civil war, 
state-on-state, insurgency, mass migration, competition for resources, and extreme weather events. 

Figure 7 – Predicting Patterns of Life 

In understanding how individuals and groups will react to hybrid warfare OE events, modelers need to use 
voting models that assume people reveal their true preferences, game theory models that assume people behave 
strategically in their own interest, and social psychological models that consider how individual preferences 
might change in group interactions.  Also, cognitive models enable the modeling of both transient states and 
more permanent traits. Transient states are short lasting emotions, such as joy, fear, anger, and sadness, as well 
as longer lasting moods (e.g., fearful, happy, sad). Traits include affective personality traits, such as emotional 
stability and extraversion of the five-factor personality model [10].  

The collection of unstructured data (such as email, text messages, tweets, forum posts, etc.) provides a natural 
data set for applying five-factor personality model because these social networks use similar individual, 
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organization, and societal models discussed in this paper.  The five-factor personality model  is often referred 
to by the five-mnemonic OCEAN, where O stands for Openness, C for Conscientiousness, E for Extraversion, 
A for Agreeableness, and N for Neuroticism gives the capabilities to understand individual personality 
characteristics, needs, and values [13]. By applying the human and organization behavioral models along with 
the use of information extraction, psycholinguistic dimensions, and network topological analysis (Centralities, 
PageRank, Communities, Neighborhood) – modelers can: 1) generate personality profiles (Human essentials - 
human dynamics, and info reasoning and morphing/sentiment); and 2) gain a deeper understanding of terrorist's 
personality characteristics, needs, and values to help intelligence analysts understand their behaviors/reactions.  
The five-mnemonic OCEAN personality characteristics identity an individual’s preferences in making choices, 
as illustrated in figure 8.  When linking voting models with cognitive models, the five-mnemonic OCEAN 
personality characteristics are importance because they enable the modeler to better understand how individuals 
make choices in groups where individuals can be acting rationally but as a group acting irrational. 

Modelers can use these models and technologies to understand the population’s society and culture elements 
and relationships within an OE such as: 1) organization of key groups in the society; 2) relationships and 
tensions among groups; ideologies and narratives that resonate with groups; 4) values of groups (including 
tribes), interests, and motivations; 5) means by which groups (including tribes) communicate, and 6) the 
society’s leadership. 

Figure 8 – Five-Mnemonic OCEAN Personality Characteristics 

An important note, the social media services used by terrorists are based on Social Network Analysis (SNA), 
linked analysis, and network topological analysis techniques.  Therefore, using Big Data, NLP, information 
extraction, and graph computing technologies on structured and unstructured data can enable modelers to 
accurately and dynamically depict how an adversary is organized and equipped, the threat’s capabilities, and 
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how the threat has employed forces in the past.  Modelers could use the MAL framework along with the above 
technologies and human, organization, societal models to design mission threads that 1) identify high-value 
target lists within groups; 2) exploit adversary’s weakness; and 3) employ asymmetric tactics to disrupt the 
adversary’s irregular warfare methods, social/culture networks, logistic/supply networks, and economic 
activities. 

3.8 Leveraging Cognitive Assistants to Perform Mission Intelligence 
In modeling and simulating complex real-world hybrid warfare OEs such as the Aleppo, Syrian conflict there 
are many PMESII-PT entities, behaviours and interactions to understand.  When considering all the actors, 
cultures, religious, political, economic, policies/treaties, standard operation procedures, etc. decision makers 
need to remember that, when intervening in an OE, the problems, criteria and weights, and enumerations stress 
human rational thinking, leading to intuition thinking which causes uncertainty.  Cognitive systems provide the 
ability to understand complex problems that involve multiple decision criteria, weights, and facts to infer the 
most likely answer based on the evidence.  Cognitive systems are able to understand the explicit and implicit 
knowledge contained in human language by combining three main technologies that enable human cognitive 
thinking: NLP/Information Extraction, hypothesis generation and evaluation, and dynamic learning computing 
[1].  Cognitive systems use ontologies that represent the entities and relationships as they exist in the real world. 
These cognitive technologies enable cognitive solutions to ingest and extract entities and relationships from 
unstructured data sources and convert the data into the ontology structured model stored in a corpus.  Once the 
unstructured data is stored in a corpus – cognitive systems like IBM Watson, illustrated in figure 9, apply: 1) 
questions analysis; 2) probabilistic computing (hypothesis generation and evidence scoring/ concept detection 
models); 3) final merge and ranking of overlapping or duplicate answers; and 4) supporting evidence merging 
and ranking (applies the justifying passage model to evidence) to reason/infer a ranked list of answers & 
evidence drawn from the system’s corpus of knowledge [1]. 

Figure 9 - IBM Watson's DeepQA Factoid Pipeline 

Graph databases and models can be used to represent the cognitive system’s corpus as a knowledge graph 
defined by the ontology as sets of nodes (entities) that are connected by edges representing the relationships 
between entities.  Cognitive systems, illustrated in figure 10, can apply reasoning models (Markovian & 
Bayesian Networks, Anomaly Detection Tools, etc.) and cognitive networks (Deep Learning/Emotion Analysis) 
to perform multi-inferencing that identify and computationally infer non-obvious relationships spanning over 
time.  This capability will enable users to understand and correlate events occurring beyond one’s observation 
space thus reducing uncertainty and risk in decision making.  
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Figure 10 - Machine Learning and Deep Reasoning2 

Symbiotic Cognitive Systems (Cogs) can be used to model human agents (nodes) in an abstract model.  Cogs 
can perform abductive reasoning by applying hypotheses and evidence computing to reason about 
complementary, contradicting, and competing theories like grievances, greed, opportunities, and conflict 
cleavages (master/private cleavage (religious, north vs. south, etc.)) to reason/explain the actors, relationships 
and feedback loops influencing events in an OE.  Cogs work together in a distributed simulated/live environment 
to apply probabilistic computing to every stimulus event and learn through feedback loops [17].  This will enable 
cognitive information to flow across a Bayes network, Markovian, and Deep Belief Networks that leverages 
multi-inferencing to look across entire corpora of knowledge enabling discovery of unknowns.  Cogs will enable 
self-learning agents based on simulation runs that will be able to perform complex data-driven decision-making. 

3.9 Simulating the Optimal Goal-Based Mission Threads 
The Simulation-Analysis-Loop (SAL) is a simulation and analytics framework that enables decision makers to 
test the dynamic behaviour of a hybrid warfare model along with a goal-based, mission thread via simulation to 
quantify both performance and uncertainty [7].  As discussed above, hybrid warfare environments are complex 
OEs involving many entities, events, relations, and feedback loops such as transnational criminal/terrorist 
activities, insurgents, civil war, and competition for resources.  The MSAL framework will enable modelers to 
M&S these classes of SoS that make up the hybrid warfare OE: collaborative systems, directed systems, virtual 
systems, and knowledge systems.  The decision makers’ decisions will be stochastic in nature – based on the 
M&S and cognitive processes to make the decision.  The graph computing technology used in the MSAL 
framework enables the basis for stochastic simulation, e.g., Bayesian networks, Marchov chains, credal nets – 
to M&S the hybrid warfare OEs.   

2 Source: 2016 IBM Corporation System G - Graph Computing as an Intelligence Machine 
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Once the mission goals, mission model, and possible mission threads have been develop for a hybrid warfare 
environment that represents the complex entities, events, relations, and feedback loops, the next step of the 
MSAL iterative loop process is to simulate the dynamic behavior of the model to determine optimal alternative 
approaches based on performance and uncertainty quantification calculations of Areas of Noteworthy 
Performance (ANPs).  The SAL simulation process is initially driven by one-at-a-time parameter sensitivity 
studies to understand the how the uncertainty in the output of the models or system can be apportioned to 
different sources of uncertainty in its inputs.  The sensitivity analysis helps to increase the understanding of the 
relationships between input and output variables in a system or model.  This also helps with uncertainty 
reduction by identifying model inputs that cause significant uncertainty in the output.  This helps modelers focus 
on those input variables causing signification uncertainty and to work through the initial approach to bounding 
objective functions with uncertainty.   The key PMESII variables that identify the mission model’s entities, 
behaviors, and relations are binned to run optimization campaigns and calculate local uncertainty for ANP. 

The next step is to conduct uncertainty quantification to identify noteworthy performance, global maximums 
and minimums, and those areas within which the model may want to be optimized.  Uncertainty quantification 
aims to reduce uncertainties in the real-world application mission environment and simulation models by 
running simulations to determine how likely certain outcomes are if some aspects of the system are not exactly 
known.  M&S uncertainty in complex hybrid threats OEs can be represented as aleatoric and epistemic 
uncertainties (vernacularly distinguished as “known unknowns” and “unknown unknowns”). Aleatoric 
uncertainty, aka statistical uncertainty, is representative of unknowns that differ each time we run the same 
experiment.  Aleatoric uncertainties are “irreducible” in the sense that they are always present.  Epistemic 
uncertainty, aka systematic uncertainty, is due to things we could in principle know but don't in practice.  
Epistemic uncertainties are often “reducible” through investment, time or research [18].  The SAL process 
provides modelers the ability to use real-time streaming data or historical data collected from the mission 
environment model (real-world), apply analytics, and perform iterative looping and uncertainty quantification 
calculation to work toward reducing epistemic uncertainties to aleatoric uncertainties.  Modelers can use 
techniques such as the Monte Carlo method, Karhunen–Loève, and/or polynomial chaos expansions to quantify 
aleatoric uncertainties; and they can use fuzzy logic, evidence theory and Dempster–Shafer theory to quantify 
epistemic uncertainties. 

The MSAL process uses a quantitative risk model to calculate the impact of the uncertain parameters and the 
decisions actors make on outcomes that they care about.  Such a model can help decision makers understand 
the impact of uncertainty and the consequences of different decisions. The process of risk analysis includes 
identifying and quantifying uncertainties, estimating their impact on outcomes that actors care about, building 
a risk analysis model that expresses these elements in quantitative form, exploring the model through simulation, 
and making risk management decisions that can help decision makers avoid, mitigate, or otherwise deal with 
risk.   

Modelers use forward propagation to understand how the various sources of uncertainty are propagated through 
the model to predict the overall uncertainty in the system response [18].  Forward propagation enables modelers 
to focus on the causes/influence on the outputs from the parametric variability listed in the sources of 
uncertainty.  For unknown uncertainties associated with the SoS’s input sources, modelers can use inverse 
uncertainty assessment and parameter uncertainty to estimate the discrepancy between the experiment and the 
mathematical model (which is called bias correction), and estimate the values of unknown parameters in the 
model if there are any (which is called parameter calibration or simply calibration).  Performing inverse 
uncertainty assessment and parameter uncertainty simultaneously enables the model parameters to be calibrated 
simultaneously using test data [18].   
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Each simulation run creates an instance of a mission thread. The integration of multiple instances of mission 
threads and subsequent use of Bayes (or Markov or creedal) statistics create macro uncertainty about the mission 
thread. Bayesian networks enables the simulation model to model the mission threads as a set of random 
variables and their conditional dependencies via a directed acyclic graph (DAG).  For example, a Bayesian 
network could represent the probabilistic relationships between drought, crop growth output, economic decline, 
and impacts on human well-being [19].  In this paper, a Bayes net can represent a military operation OODA 
based event trajectory. Modelers can use Markov networks to model undirected interactions of events based on 
random variables.  Modelers can use Markov networks to model the probable outcomes of interactions between 
individuals participating in tribes, organization, and/or society given a stimulus within an OE.  Modelers will 
run multiple iterative interrelated MSAL loops using real-world data collected and fused through Big Data to 
improve inverse uncertainty bias correction and parameter calibration.  In each simulation loop, modelers 
calculate probability of success, Ps, for meeting mission goals and bounding macro uncertainty. The modelers 
can postulate new variable definitions to reduce uncertainty and new mission model to reduce uncertainty, and 
then iterate through the SAL. Is the probability of success Ps now acceptable? Have ‘risky’ ANP been reduced 
or eliminated? Are the macro and local uncertainty acceptable? If not, continue to iterate.  After iterations of 
the MAL and SAL, new mission models are postulated from the SAL results.  The updated mission model is 
returned to the Uber loop to update the mission environment and the model under test.  New MAL to SAL cycle 
begins again [7]. 

Data Analytics – Simulation data is acted upon by parametric and statistical analysis tools to evaluate the 
performance of the multiple simulation runs. Graphical models are tested using inference testing and pattern 
recognition techniques.  The graph computing environment provides the continuity across each of the above 
components in a holistic graph environment that provides the spatial and temporal continuity across multiple 
layers and mission threads [7]. 
The mission environment data (streaming and/or historical data) is used to run the “run-time environment.” This 
enables modelers to check run-time data against real world performance data and adjust both models and 
simulations to gain confidence in our run-time environment.  Also, the ability to continuously collect real-world 
data and use it to drive the SAL runs and analyze the data using anomaly detection, spatiotemporal analytics, 
agent base models, and Bayesian Networks means that we can detect anomalies, robustness, and truthfulness of 
the data.  This can help modelers see if there are hidden or stigmatized population, or illicit or private relations 
[10].  MSAL, Big Data, analytics, and the graph database enables modelers to connect the static and dynamic 
networks to observations and measurements and to address the scalability issues that burden algorithms that 
involve analyzing many links. 

Figure 11 shows how modelers can use the SAL iterative looping to test the dynamic behavior of an abstract model 
representing the Aleppo conflict conditions.  The SAL process can dynamically traverse the DAG graph (mission 
threads) and execute micro, macro, and meso human and organizational models to project the impacts on regional 
socio-economic and political stability attributes like food insecurity, increased population migration, increase 
social intension, etc.  The graph computing enables modelers to iteratively add, update, and connect models 
through each looping.  Each simulation looping provides better understanding of the uncertainties and accuracies 
of the agents, data, and interactions in the model. If the probability of success is low and ANP indicators are low, 
modelers can add and/or remove mission threads by connecting/disconnecting graphs.  Then modelers can run 
another iteration of the model to determine the effects/consequence analysis such as risk to economic development, 
tension rising from refugees and indiscriminate bombings and deaths of children. 
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Figure 11 - MSAL Loop Timeline 

Figure 12 shows how MSAL, cybernetics, system dynamics supported by Big Data, graph computing, cognitive 
computing, and IoT enables modelers to collect structured and unstructured data and develop a mission 
environment model (systems thinking model) linking the various sub-systems that represents the PMESII-PT 
entities, relations, and feedback loop as they exist in the real-world such as the current urban warfare situation 
in Aleppo, Syria.  The MSAL framework enables modelers to use information extraction technologies to extract 
tactic knowledge from unstructured text combined with structured data in graph data and models.  Modelers can 
apply individual, organization, and societal models like ABM to: 1) represent social groupings, people, 
biological entities, and physical systems; 2) understand how individual and group interactions generate macro-
level outcomes.  The mission model enables modelers to apply the models discussed in this paper (voting and 
social decision models, social network models, link analysis, multimode networks, and agent-based modeling 
(ABM)) to better understand and forecast the behavior and interaction of PMESII variables over space and time.  
This will enable decision makers to understand current and potential future problems to visualize the end-state 
to be achieved.  The graph modeling enables decision makers to identify the set of entities (mission model) and 
possible mission threads to achieve the mission goals.   

The SAL process enables decision makers to understand the dynamic behavior of the model under test through 
multiple iterative simulation runs (traversing the multi-mission threads (Bayes and/or Markov networks)) to 
calculate the probability of success to meet mission goals under known risk.  The cogs can act as specialized 
domain agents that understand the cognitive concepts in the simulated data (collected from the real-world) to 
apply cognitive inference models that reason over multiple events, decision criteria, and weights to 
computational derive the optimal choices to meet mission goals.  Through the multiple simulation iterations – 
the cogs can continuously adapt through machine learning to derive the best answers.  The SAL process can use 
the cogs results to provide automated decision plans based on standard operating doctrine that describe the 
optimal alternative solutions to meet the mission goals. 

Graph computing enables the combining of components and federating models.  Each level in the M&S pyramid 
is presented as a graph – the resolution could be described as a graph, or set of graphs, which represent the 
system or mission of interest.  Connecting strategic, operational, and tactical level missions would be a matter 
of traversing the pyramid - either merging graphs (going up) or extracting sub-graphs (going down).   In this 
context, graphs would provide continuity across the M&S pyramid, allowing for data and structure connectivity 
[7].  
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Figure 12 – Modeling the Physical and Human Behavioral Layers of an OE 

Figure 13 shows a good representation of the different categories (entity types) and relationship types that the 
system thinking model should graphically depict as the mission environment.  The MSAL framework provides 
a systems thinking framework that enables decision makers to graphically depict the stakeholders and the 
relationships between them as they exist in their OE.  The system dynamics and cybernetics supported by Big 
Data, IoT, graph computing, and cognitive computing provide the decision makers with a platform that provides 
capabilities to collect MULTI-INT data from IoT and apply NLP/relationship extractions to automatically 
extract entities (people, places, locations, events, etc.); apply analytic models (values, beliefs, morals, 
expectations, values, customs, behaviors, needs, patterns of life, sociology, etc.); and graphically depict a COP 
that represents the mission environment.  The commanders/intelligence analysts will use these different 
analytical models/graphical COPs to understand the dynamics related to various sub-systems within an AO and 
area of interest (AoI).  

The platform provides military commanders/intelligence analysts with the intelligence analytical frameworks 
and graphical COP visualizations that enable them to analyse an aggregate (and ever-changing) system 
"holistically" as well as in terms of the individual forces. This systems thinking mapping allows the military to 
appreciate the connections between individual forces at the lowest levels and emergent effects at the aggregate 
level.  Moreover, by depicting relationships graphically, a group of decision makers will more readily be able 
to imaginatively and creatively see places (both geographically, temporal, and conceptually) as windows of 
opportunity where the application of a commander's soldiers, resources, and unified-action relationships might 
influence counterinsurgent missions/activities within OE.  The platform consists of Cogs that will provide the 
military abductive reasoning, center of gravity, and forecasting capabilities to understand what the effects of 
their specific missions will be once they are introduced into the environment, always appreciating that (i) their 
actions may not work as planned, (ii) their actions may very well generate hoped-for consequences, and (iii) 
their actions will also likely engender unintended and unforeseen consequences, as illustrated in Figure 13. 
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Figure 13 – Integrated Battle Command (IBC) Modeling Space 

4.0 CONCLUSION 

The hybrid warfare OE consists of persistent conflicts between terrorists, insurgents, established governments, 
and foreign countries fighting in overlapping proxy wars to pursue their own strategic interest.  The adversaries 
will use traditional, irregular, asymmetric, immoral warfare tactics to achieve their goals.  These factors and 
plus corruption and failed-states that cannot provide basic needs for their citizens have caused regional socio-
economic instabilities.  This paper has shown, to win in a complex persistent environment, decision makers can 
apply concepts of system dynamics and cybernetics supported by an integrated set of technologies like MSAL, 
Big Data, graph computing, cognitive computing and IoT to capture physical environment, cognitive, 
organizational, societal, and cultural factors of the PMESII’s variables over space and time that are critical in 
the urban battlespace.  The MSAL framework supported by the above technologies enables the automation of 
data collection, fusion, analysis, and visualization of the mission environment (the real-world).   

Once decision-makers have a common understanding of the operating environment and a clear definition of the 
problem – MSAL enables leaders to create the static models (mission model) that are abstractions of the real world 
(mission environment model) that is under test.  Mission models (or scenario) are an identification of the major 
systems/actors that must be represented by the simulation, a conceptual description of the capabilities, behaviors, 
and relationships (interactions) between these major systems/actors over time.  Decision-makers define the goals 
and supporting mission threads (plausible outcomes) based on the underlying combinatorics effects of everything 
in the real-world environment.  During the MAL process, modelers can use multimode networks, social network 
models, link analysis, social decision models, and agent-based models (ABMs) for simulating the actions and 
interactions of autonomous agents (both individual, organizational, and societal) with a view to assessing their 
micro, macro, and meso effects on the system as a whole. It combines elements of game theory, complex systems, 
emergence, computational sociology, multi-agent systems, operational/managerial independence, and 
evolutionary programming.   

Decision makers are able to use the SAL process to test the dynamic behavior of a hybrid warfare model along 
a goal-based, mission thread via simulation to quantify both performance and uncertainty.  Modelers define 

Improving Decision Making by Reducing 
Uncertainty in Complex Systems of Systems 

15 - 20 STO-MP-MSG-143 



reductions and uncertainty bounds based on mission goals.  Modelers perform multi-loop iterations of 
simulation runs on the mission model(s)’ mission threads that interpolate and extrapolate real-world data 
(streaming/historical and structured/unstructured) from the Uber loop.  For each simulation run, modelers 
calculate probability of success, Ps, for meeting mission goals; and apply uncertainty quantification methods 
(forward propagation, inverse assessment, and parameter uncertainty) to reduce epistemic and aleatoric 
uncertainties in ANP.  By applying optimization, parametric, and uncertainty quantification sub-loops in SAL 
simulation runs on real-world mission threads – decision makers are able to identify optimal operational 
approaches that achieve end-state objectives while reducing the chance of failure or unacceptable consequences 
in performing that sequence of actions.  Using cogs in the Uber loop and SAL provides the capabilities to apply 
standard operating procedures to test multiple complementary, contradicting, and competing ideas against 
evidence retrieved from real-world data that identifies tactical decisions and plans that best meet decision 
maker(s)’ mission goals. 

The SMAL framework supported by Big Data, graph computing, cognitive computing and IoT enables a 
platform that overcomes many traditional M&S problems: 

 It automates the process of real-world data collection and graphically depicting COP of the OE.

 It validates the robustness of the models in the face of errors in the data. (Detection of
abnormal/hidden entities (e.g., criminals, terrorists) and private relations (covert operations, political
influence, etc.))

 It understands human and organization behaviours – dealing with uncertainty and adaptation;

 It enables ingesting massive amounts of data, scalable computing, and interconnecting different
simulation modes across the M&S pyramid.

This paper has discussed techniques that would allow NATO to improve campaign planning involving 
complex systems of systems (SoS) to quickly understand the operational environment; define the problem; 
visualize the military end-state; and intervene with an optimal operational approach (ways/means) to achieve 
the desired end state. 

5.0 ACKNOWLEDGEMENTS 

The authors wish to thank Frank Stein (Director, Analytics Solution Center, IBM Federal CTO Office) for their 
technical review and discussions.  The authors would like to thank Joseph Marvin (ESEP Prime Solutions 
Group, Incorporated, joemarvin@psg-inc.net) and R. K. Garrett, Jr. (Prime Solutions Group, Incorporated, 
bobgarrett@psg-inc.net) for technical consulting and MSAL references provided.  

6.0 REFERENCES 

[1] FM 3-0. Operations. 27 February 2008 

[2] The United Nations World Water Assessment Programme (WWAP). 2015. The United Nations World 
Water Development Report 2015 – WWAP, 2015 

[3] 2008 Army Posture Statement. Persistent Conflict. Retrieved from 
https://www.army.mil/aps/08/information_papers/prepare/Persistent_Conflict.html  

Improving Decision Making by Reducing 
Uncertainty in Complex Systems of Systems 

STO-MP-MSG-143 15 - 21 

mailto:joemarvin@psg-inc.net
mailto:bobgarrett@psg-inc.net
https://www.army.mil/aps/08/information_papers/prepare/Persistent_Conflict.html


[4] JC. Capstone Concept for Joint Operations 2020, 10 September 2012 

[5] NATO. North Atlantic Treaty Organization. Retrieved from 
http://www.nato.int/cps/en/natohq/topics_50321.htm 

[6] Adams, B.M., M.S. Ebeida, M.S. Eldred, J.D. Jakeman, L.P. Swiler, J.A. Stephens, D.M. Vigil, T.M. 
Wildey, W.J. Bohnhoff, K.R. Dalbey, J.P. Eddy, K.T. Hu, L.E. Bauman and P.D. Hough, DAKOTA: A 
Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, 
Uncertainty Quantification, and Sensitivity Analysis: Version 6.2 Theory Manual, CASL Technical 
Report: CASL-U-2015-0090-000, May 8, 2015. 

[7] Garrett, R., & Loper, M. (2015, June 3). A Comparison of Traditional Simulation and the MSAL 
Approach. Georgia Tech Research Institute Information & Communications Laboratory. Retrieved from 
http://www.slideshare.net/BobGarrett1/a-comparison-of-traditional-simulation-and-msal-632015 

[8] Joseph Marvin, "System of Systems Analysis Application (SoSAA)", Prime Solutions Group, Inc. 

[9] 2014, Statistical Information and Relation Extraction (SIRE) Toolkit Dr. Mohamed N. Ahmed 2014 

[10] National Research Council. (2008). Behavioral Modeling and Simulation: From Individuals to Societies. 
Committee on Organizational Modeling: From Individuals to Societies, Greg L. Zacharias, Jean 
MacMillan, and Susan Van Hemel, editors. Board on Behavioral, Cognitive, and Sensory Sciences, 
Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies 
Press. 

[11] FM 3-24 MCWP 3-33.5 COUNTERINSURGENCY December 2006 

[12] Cluster analysis, Wikipedia, retrieved from https://en.wikipedia.org/wiki/Cluster_analysis 

[13] MARIA N. SCHWENGER, The science behind the PI service March, 9th 2015 

[14] Foreign involvement in the Syrian Civil War. retrieved from 
https://en.wikipedia.org/wiki/Foreign_involvement_in_the_Syrian_Civil_War 

[15] Lwin, M.R. (1997). Great powers, weak states and asymmetric strategies. Monterey, CA: Naval 
Postgraduate School. Available: http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=AD 
A340989&Location=U2&doc=GetTRDoc.pdf [accessed Feb. 2008]. 

[16] MSCO DoD Modeling and Simulation (M&S) Glossary, 2011. Available at: 
http://www.msco.mil/MSGlossary.html. 

[17] IBM Research, (April 2015). A Symbiotic Cognitive Experience Human-computer collaboration at the 
speed of thought. (IBM Research) Retrieved from IBM Research: 
http://researcher.ibm.com/researcher/view_group.php?id=5417 

[18] Uncertainty Quantification. Retrieved from https://en.wikipedia.org/wiki/Uncertainty_quantification 

[19] Bayesian Network. Retrieved from https://en.wikipedia.org/wiki/Bayesian_network 

Improving Decision Making by Reducing 
Uncertainty in Complex Systems of Systems 

15 - 22 STO-MP-MSG-143 

http://www.nato.int/cps/en/natohq/topics_50321.htm
http://www.casl.gov/docs/CASL-U-2015-0089-000.pdf
http://www.casl.gov/docs/CASL-U-2015-0089-000.pdf
http://www.casl.gov/docs/CASL-U-2015-0089-000.pdf
http://www.slideshare.net/BobGarrett1/a-comparison-of-traditional-simulation-and-msal-632015
https://en.wikipedia.org/wiki/Foreign_involvement_in_the_Syrian_Civil_War
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=AD
http://www.msco.mil/MSGlossary.html
http://researcher.ibm.com/researcher/view_group.php?id=5417
https://en.wikipedia.org/wiki/Uncertainty_quantification
https://en.wikipedia.org/wiki/Bayesian_network



